skip to main content


Search for: All records

Creators/Authors contains: "Fraser, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Visco-resistive magnetohydrodynamic turbulence, driven by a two-dimensional unstable shear layer that is maintained by an imposed body force, is examined by decomposing it into dissipationless linear eigenmodes of the initial profiles. The down-gradient momentum flux, as expected, originates from the large-scale instability. However, continual up-gradient momentum transport by large-scale linearly stable but nonlinearly excited eigenmodes is identified, and found to nearly cancel the down-gradient transport by unstable modes. The stable modes effectuate this by depleting the large-scale turbulent fluctuations via energy transfer to the mean flow. This establishes a physical mechanism underlying the long-known observation that coherent vortices formed from nonlinear saturation of the instability reduce turbulent transport and fluctuations, as such vortices are composed of both the stable and unstable modes, which are nearly equal in their amplitudes. The impact of magnetic fields on the nonlinearly excited stable modes is then quantified. Even when imposing a strong magnetic field that almost completely suppresses the instability, the up-gradient transport by the stable modes is at least two-thirds of the down-gradient transport by the unstable modes, whereas for weaker fields, this fraction reaches up to 98% . These effects are persistent with variations in magnetic Prandtl number and forcing strength. Finally, continuum modes are shown to be energetically less important, but essential for capturing the magnetic fluctuations and Maxwell stress. A simple analytical scaling law is derived for their saturated turbulent amplitudes. It predicts the fall-off rate as the inverse of the Fourier wavenumber, a property which is confirmed in numerical simulations. 
    more » « less
  2. Abstract

    We study the properties of oscillatory double-diffusive convection (ODDC) in the presence of a uniform vertical background magnetic field. ODDC takes place in stellar regions that are unstable according to the Schwarzschild criterion and stable according to the Ledoux criterion (sometimes called semiconvective regions), which are often predicted to reside just outside the core of intermediate-mass main-sequence stars. Previous hydrodynamic studies of ODDC have shown that the basic instability saturates into a state of weak wave-like convection, but that a secondary instability can sometimes transform it into a state of layered convection, where layers then rapidly merge and grow until the entire region is fully convective. We find that magnetized ODDC has very similar properties overall, with some important quantitative differences. A linear stability analysis reveals that the fastest-growing modes are unaffected by the field, but that other modes are. Numerically, the magnetic field is seen to influence the saturation of the basic instability, overall reducing the turbulent fluxes of temperature and composition. This in turn affects layer formation, usually delaying it, and occasionally suppressing it entirely for sufficiently strong fields. Further work will be needed, however, to determine the field strength above which layer formation is actually suppressed in stars. Potential observational implications are briefly discussed.

     
    more » « less
  3. Straining of magnetic fields by large-scale shear flow, which is generally assumed to lead to intensification and generation of small scales, is reexamined in light of the persistent observation of large-scale magnetic fields in astrophysics. It is shown that, in magnetohydrodynamic turbulence, unstable shear flows have the unexpected effect of sequestering magnetic energy at large scales due to counteracting straining motion of nonlinearly excited large-scale stable eigenmodes. This effect is quantified via dissipation rates, energy transfer rates, and visualizations of magnetic field evolution by artificially removing the stable modes. These analyses show that predictions based upon physics of the linear instability alone miss substantial dynamics, including those of magnetic fluctuations. 
    more » « less
  4. Visco-resistive magnetohydrodynamic turbulence, driven by a two-dimensional unstable shear layer that is maintained by an imposed body force, is examined by decomposing it into dissipationless linear eigenmodes of the initial profiles. The down-gradient momentum flux, as expected, originates from the large-scale instability. However, continual up-gradient momentum transport by large-scale linearly stable but nonlinearly excited eigenmodes is identified and found to nearly cancel the down-gradient transport by unstable modes. The stable modes effectuate this by depleting the large-scale turbulent fluctuations via energy transfer to the mean flow. This establishes a physical mechanism underlying the long-known observation that coherent vortices formed from nonlinear saturation of the instability reduce turbulent transport and fluctuations, as such vortices are composed of both the stable and unstable modes, which are nearly equal in their amplitudes. The impact of magnetic fields on the nonlinearly excited stable modes is then quantified. Even when imposing a strong magnetic field that almost completely suppresses the instability, the up-gradient transport by the stable modes is at least two-thirds of the down-gradient transport by the unstable modes, whereas for weaker fields, this fraction reaches up to 98%. These effects are persistent with variations in magnetic Prandtl number and forcing strength. Finally, continuum modes are shown to be energetically less important, but essential for capturing the magnetic fluctuations and Maxwell stress. A simple analytical scaling law is derived for their saturated turbulent amplitudes. It predicts the falloff rate as the inverse of the Fourier wavenumber, a property which is confirmed in numerical simulations.

     
    more » « less
  5. Summary Magnetic minerals form or alter in the presence of hydrocarbons, making them a potential magnetic proxy for identifying hydrocarbon migration pathways. In this paper we test this idea by magnetically measuring core samples from the Tay Fan in the Western Central Graben in the Central North Sea. In a companion paper, 3D petroleum systems modelling has been carried out to forward model migration pathways within the Tay Fan. Rock magnetic experiments identified a range of magnetite, maghemite, iron sulphides, siderite, goethite and titanohematite, some of which are part of the background signal, and some due to the presence of hydrocarbons. Typical concentrations of the magnetic minerals were ∼10–200 ppm. Importantly, we have identified an increasing presence of authigenic iron sulphides (likely pyrite and greigite) along the identified lateral hydrocarbon migration pathway (east to west). This is likely caused by biodegradation resulting in the precipitation of iron sulphides, however, though less likely, it could alternatively be caused by mature oil generation, which subsequently travelled with the migrating oil to the traps in the west. These observations suggest mineral magnetic techniques could be a rapid alternative method for identifying the severity of biodegradation or oil maturity in core sample, which can then be used to calibrate petroleum systems models. 
    more » « less
  6. We present the fabrication and characterization of 3 dB asymmetric directional couplers for the astronomical K-band at wavelengths between 2.0 and 2.4 µm. The couplers were fabricated in commercial Infrasil silica glass using an ultrafast laser operating at 1030 nm. After optimizing the fabrication parameters, the insertion losses of straight single-mode waveguides were measured to be∼<#comment/>1.2±<#comment/>0.5dBacross the full K-band. We investigate the development of asymmetric 3 dB directional couplers by varying the coupler interaction lengths and by varying the width of one of the waveguide cores to detune the propagation constants of the coupled modes. In this manner, we demonstrate that ultrafast laser inscription is capable of fabricating asymmetric 3 dB directional couplers for future applications in K-band stellar interferometry. Finally, we demonstrate that our couplers exhibit an interferometric fringe contrast of><#comment/>90%<#comment/>. This technology paves the path for the development of a two-telescope K-band integrated optic beam combiner for interferometry to replace the existing beam combiner (MONA) in Jouvence of the Fiber Linked Unit for Recombination (JouFLU) at the Center for High Angular Resolution Astronomy (CHARA) telescope array.

     
    more » « less